View Factor Orientation (or View factor or shape factor) plays an important role in radiation heat transfer. View factor is defined as, "fraction of radiation leaving surface 'i' and strike 'j' ". Summation Rule (View Factor) If there is are similar surfaces 'i' and 'j' , then: Blackbody Radiation Exchange Radiation Exchange between Opaque, Diffuse, Gray surfaces in an Enclosure 1. Opaque 2. Surfaces 3. Two surface enclosure Radiation Shield It is used to protect surfaces from radiation act like a reflective surface. References: Material from Class Lectures + Book named Fundamentals of Heat and Mass Transfer by Theodore L. Bergman + My knowledge. Photoshoped pics are developed. Some pics and GIF from Google. Videos from YouTube ( Engineering Sights ).
Get link
Facebook
X
Pinterest
Email
Other Apps
Isometric Projection Of Solids
Get link
Facebook
X
Pinterest
Email
Other Apps
-
Isometric Drawing:
A type of pictorial projection in which all three dimensions of an object are shown in one view.
In this 3-D drawing of an object, all three dimensional axes are maintained at equal inclinations with each other , i.e. 120 degrees.
All mutual perpendicular plane surfaces of an object and the edges formed by these surfaces are equally inclined to POP.
When orthographic views are given, a good imagination is needed to visualize the object in 3-D space.
Some Important Terms:
The angle between these axes are equal i.e. 120 degrees, so called Isometric Axes.
The line parallel to these axes are called Isometric Lines.
The planes representing the cube are called Isometric Planes.
The reduction is approximately 0.815. It forms a reducing scale which is used to draw isometric projection and is called Isometric Scale.
True-length Distances are shown along isometric lines.
Isometric line is the line that run parallel to any of the isometric axes.
Types Of Isometric Drawings:
There are two types of isometric drawing, namely:
Isometric Projections.
Isometric Views.
1. Isometric Projections:
All the edges of the cube are equally inclined to the plane of projection, they get equally foreshortened in isometric projection.
2. Isometric Views:
It is way by which you can represent your shapes into 3-D view.
Isometric Of Plane Figures:
For 2-D figures only two isometric axes are required.
Shape containing inclined lines should be enclosed in a rectangle
Draw isometric of the rectangle and then inscribe that shape in it.
Example of Isometric Projection:
How we convert orthographic views into isometric projection is completely described by the video given below:
TAPING CORRECTIONS There are two types of corrections depending upon the type of errors in tape due to the different conditions. 1. Systematic Errors : Slope Erroneous tape length Temperature Tension Sag 2. Random Errors : Slope Alignment Marking & Plumbing Temperature Tension & Sag 1. Temperature Correction It is necessary to apply this correction, since the length of a tape is increased as its temperature is raised, and consequently, the measured distance is too small. It is given by the formula, C t = 𝛼 (T m – T o )L Where, C t = the correction for temperature, in m. 𝛼 = the coefficient of thermal expansion. T m = the mean temperature during measurement. T o = the tempe...
Solid Mechanics OR Mechanics of Materials OR Strength of Materials: It is the study of mechanics of body i.e. forces and their effects on deformable solids under different loading conditions. Deformable Body Mechanics: It is the study of non-rigid solid structures which deform under load. Deformation/Distortion ⇾ change of shape and size OR have some relative displacement or rotation of particles. It happens when we apply combined load. Rigid Body Motion ⇾ Translation or rotation of particles but having constant distance between particles. Since deformation occur at particular load. Below this load, every body is considered as rigid body . Types of Load: Point Load ⇾ Load apply on a single point i.e. concentrated load. Uniformly Distributed Load (UDL) ⇾ Load remains uniform throughout an area of element like beam. Varying Distributed Load (VDL) ⇾ Load varies with length with constant rate. Moment ⇾ It measures the tend...
Strain Transformation Principal Strain and stresses can occur in the same directions. Material Properties Relation (Young, bulk Rigidity Modulus) ⇼ Hooke's Law General State of Strain ⇼ Є X , Є Y , Є Z and ૪ X , ૪ Y , ૪ Z . Stress (normal or shear)/ Strain (normal or shear) ⇼ vary with element orientation. Transformation equations for Plane strain derived from: Interpretation of Experimental measurements Represent in graphical form for plane strain (Mohr's Circle). Geometry and independent of material properties. Mohr's Circle It is defined as., " A graphical method for determining normal and shear Shear stresses without using the stress transformation equations " . While considering the circle CCW ⇼ Shear strain positive upward & Normal strain positive towards right. The construction of Mohr's circle (with normal and shear stresses are known) is quite easy which include following steps: Draw a set o...
Comments
Post a Comment
HI, we wI'll contact you later