View Factor Orientation (or View factor or shape factor) plays an important role in radiation heat transfer. View factor is defined as, "fraction of radiation leaving surface 'i' and strike 'j' ". Summation Rule (View Factor) If there is are similar surfaces 'i' and 'j' , then: Blackbody Radiation Exchange Radiation Exchange between Opaque, Diffuse, Gray surfaces in an Enclosure 1. Opaque 2. Surfaces 3. Two surface enclosure Radiation Shield It is used to protect surfaces from radiation act like a reflective surface. References: Material from Class Lectures + Book named Fundamentals of Heat and Mass Transfer by Theodore L. Bergman + My knowledge. Photoshoped pics are developed. Some pics and GIF from Google. Videos from YouTube ( Engineering Sights ).
Principal Strain and stresses can occur in the same directions.
Material Properties Relation (Young, bulk Rigidity Modulus) ⇼ Hooke's Law
General State of Strain ⇼ ЄX, ЄY, ЄZ and ૪X, ૪Y, ૪Z.
Stress (normal or shear)/Strain (normal or shear) ⇼ vary with element orientation.
Transformation equations for Plane strain derived from:
Interpretation of Experimental measurements
Represent in graphical form for plane strain (Mohr's Circle).
Geometry and independent of material properties.
Mohr's Circle
It is defined as., "A graphical method for determining normal and shear Shear stresses without using the stress transformation equations".
While considering the circle CCW ⇼ Shear strain positive upward & Normal strain positive towards right.
The construction of Mohr's circle (with normal and shear stresses are known) is quite easy which include following steps:
Draw a set of coordinate axes with ЄX (+ve right) and ૪Y/2(+ve upward).
Locate the center C of the circle at points ЄX1 = Єavg and ૪X1Y1= 0.
Locate point A which represents strain on X-face corresponds to (ЄX,૪Y/2).
Draw a line from point A to point C.
Using point C as center, draw Mohr's circle through point A.
Some key observations are:
Plane Strain ⇼ Stress condition in linear elastic fracture mechanics in which there is zero strain in the direction normal to the axis of applied tensile stress and direction of crack growth.
Principal Strain ⇼ maximum and minimum normal strain possible for a specific point on a structural element. Shear strain = 0 at the orientation where principal strain occurs. Important for predicting failure.
References:
Material from Class Lectures + Book named Engineering Mechanics of Materials by R.C. Hibbeler (6/9th Edition) + my knowledge.
Projection: The term Projection is defined as: Presentation of an image or an object on a surface. The principles used to graphically represent 3-D objects and structures on 2-D media and it based on two variables: Line of Sight. Plane of Projection. Line of Sight & Plane of Projection: Line of sight is divided into 2 types: Parallel Projection Converging Projection & A plane of projection is an imaginary flat plane upon which the image created by the lines of sight is projected. Orthographic Projection: When the projectors are parallel to each other and perpendicular to the plane of projection. The lines pf sight of the observer create a view on the screen. The screen is referred to as the Plane of Projection (POP). The lines of sight are called Projection lines or projectors. Rules of Orthographic Projection: Edges that are parallel to a plane of projection appear as lines. Edges that are incl...
Solid Mechanics OR Mechanics of Materials OR Strength of Materials: It is the study of mechanics of body i.e. forces and their effects on deformable solids under different loading conditions. Deformable Body Mechanics: It is the study of non-rigid solid structures which deform under load. Deformation/Distortion ⇾ change of shape and size OR have some relative displacement or rotation of particles. It happens when we apply combined load. Rigid Body Motion ⇾ Translation or rotation of particles but having constant distance between particles. Since deformation occur at particular load. Below this load, every body is considered as rigid body . Types of Load: Point Load ⇾ Load apply on a single point i.e. concentrated load. Uniformly Distributed Load (UDL) ⇾ Load remains uniform throughout an area of element like beam. Varying Distributed Load (VDL) ⇾ Load varies with length with constant rate. Moment ⇾ It measures the tend...
Introduction To Structural OR Concrete Design Beams must have adequate strength against different types of failure which are: Shear more dangerous than Flexural (or Bending) failure because it creates additional tensile stresses. E.g.: Airplane wing (act as cantilever beam ) and made of Nanocomposites, composites, aluminum. Following are the types of failures in Beam: Flexural (or bending) failure Diagonal Tension failure Shear-Tension failure Shear-Compression failure Following are the types of Shear : Longitudinal Shear Transverse Shear Shear Failure Diagonal Tension Failure ↠ Shear failure of reinforced concrete beam (difficult to predict). Only valid for Homogenous beams . When we apply load on beam ↠ Bending as well as Shear stresses are produced. Shear stress have maximum value at Neutral axis N.A. Bending stress have maximum value at Extreme fibers. At maximum bending stress ↠ shear stress = 0 . Assumptions for shear stresses i...
Comments
Post a Comment
HI, we wI'll contact you later